	1		1	Spr	<u> </u>	Spr								
COURSE #	SLO		FA 2015	2016	FA 2016	2017	FA 2017	2018	FA 2018	2019	FA 2019	2020	FA 2020	2021
		Design and implement a research project to												
GEOG		effectively evaluate a problem using a geographic												
104	1	information system					х							
		Develop ability to collect, manipulate, classify, and												
	2	interpret spatial data					х							
		Demonstrate ability to apply appropriate application												
		of GIS operations to analyze data and explain the												
	3	various methods for effectively presenting results					х							
		Utilize global positioning systems in combination with												
		GIS to collect, import, and display/store spatial												
	4	information					х							
		Development of Spatial Literacy through the use of				l I					l I			
		computers, mathematical algorithms, and spatial												
	5	statistics to analyze geospatial problems					х							
		איונחות נחפ נטחנפגנ טר אטרוע רפצוטחג, גנגעפוונג אפ מאפ										<u> </u>		
		to describe and explain current socio-economic,												
		cultural, and political issues resulting from the												
		important vet interactive and opposing forces of												
		homogenization and diversification (e.g. market vs												
		socialist economic systems in China: the rise of Islamic												
		avtromicm: cupranationalism and devolution in												
6506														
GEOG		Europe; uneven economic development in Southeast												ĺ
106	1	Asia; etc.).				х								
														1

COURSF #	SLO		FA 2015	Spr 2016	FA 2016	Spr 2017	FA 2017	Spr 2018	FA 2018	Spr 2019	FA 2019	Spr 2020	FA 2020	Spr 2021
		Students should be able to memorize, apply, and												
		explain the rationale behind classification systems												
		developed for recognizing, explaining, and predicting												
		relationships, patterns, and trends in Earth Systems												
		(e.g., classification of rocks; classification of thermal												
		vs. dynamic weather systems; forms of energy,												
		especially associated with the energy transformations												
		produced by atmospheric, hydrospheric, biospheric,												
		and lithospheric processes; classification of climates												
		in terms of the availability of the inputs to												
GEOG		photosynthesis; classification of biomes; classification												
120	1	of erosional vs. depositional environments; etc.)		х										
		Students should be able to describe, apply, and												
		explain the evidence behind the foundational												
		scientific models commonly used to explain and												
		predict relationships, patterns, and trends within												
		Earth Systems (e.g., Copernican Model describing												
		Earth-Sun relationships; Kinetic Theory, such as												
		applied to systems powered by differential heating;												
		Dynamics, such as applied to the general circulation												
		of the atmosphere; Thermodynamics, including the												
		unique role of water within the Earth's Global Energy												
		Budget, or the production of equilibrium landforms by												
		the agents of gradation; wave Cyclone theory; Plate												
	2	Tectonic theory; etc.).		х										
		Students should be able to explain the step-by-step												
		causes and outcomes of thermal circulation within												
		the Earth System, including across various spatial and												
		temporal scales (e.g., Sea Breezes vs. Monsoonal												l I
	3	Wind Systems vs. Hadley Cells; Plate Tectonics; etc.).		х										Í -

1 1				Spr										
COURSE #	SLO		FA 2015	2016	FA 2016	2017	FA 2017	2018	FA 2018	2019	FA 2019	2020	FA 2020	2021
COURSE # 9	SLO	Students should be able to discuss the unique characteristics and importance of water within the Earth System (e.g., high capacity to store heat energy per change in temperature; high latent heat associated with phase changes; radiative properties relative to infrared radiation and greenhouse warming; energy source behind convective weather	FA 2015	Spr 2016	FA 2016	Spr 2017	FA 2017	Spr 2018	FA 2018	Spr 2019	FA 2019	Spr 2020	FA 2020	Spr 2021
	4	systems; systematic distribution of the mechanisms by which precipitation is produced; biome variation as an evolutionary response to the distribution of water resources; significance of evapotranspiration by plants to Earth's energy budget; role of water as a flux in producing magmas at subduction zones; role of water in producing clays and free ions through chemical weathering; gradational work performed by streams, waves, and glaciers producing erosional vs. depositional landforms; etc.).		x										

				Spr										
COURSE #	SLO		FA 2015	2016	FA 2016	2017	FA 2017	2018	FA 2018	2019	FA 2019	2020	FA 2020	2021
		Develop abaam ational skills related to "reading the												
		Develop observational skills related to reading the												
		landscape" (e.g., relating changes in solar declination												
		to seasonal variation; relating changes in longitude to												
		differences in time keeping; relating real-time												
		weather observations to synoptic-scale weather												
		maps; developing and using morphologic classification												
		systems (e.g., mafic vs. felsic igneous rock												
		classification; the biologic taxonomy; etc.);												
		development of hypotheses derived from observation-												
		based rationales; relating stream offsets, sagponds,												
		and pressure ridges, as found on topographic maps,												
GEOG		to lateral-fault location, and direction and rate of												
121	1	displacement; etc.).			х									
		individual components of the physical environment												
		and of interrelationships between and spatial												
		natterns produced by these individual components												
		le g recognition of dominant plant species within												
		Coastal Sago Scrub biomo: recognition of species within												
		variation by habitat (a.g. north vs. south facing												
		clanac) within a biomourocognition of typical San												
		Siopes) within a biome, recognition of typical sam												
		Diego weather reatures and patterns (e.g., inversions,												
		sea-breezes, downsiope adiabatics, synoptic-scale												
		Highs vs. synoptic-scale Lows vs. mesoscale Lows);												
	2	etc.).			х									
		Develop technical skills and experience utilizing the												
		tools of Physical Geography to collect data (e.g.,												
		spherical grid systems: compasses and clinometers:												
		GPS receivers: infrared guns: nsychrometers and												
		psychrometric tables: wading rods pygmy meters tag												
	2	lines shovels and velocity-discharge ratings, etc.)			v l									
	3	GPS receivers; infrared guns; psychrometers and psychrometric tables; wading rods, pygmy meters, tag lines, shovels, and velocity-discharge ratings; etc.).			x									

Х

COURSE #	SLO		FA 2015	Spr 2016	FA 2016	Spr 2017	FA 2017	Spr 2018	FA 2018	Spr 2019	FA 2019	Spr 2020	FA 2020	Spr 2021
	4	Develop technical skills used to analyze and interpret the data of Physical Geography (e.g., usage of the analemma, topographic maps, synoptic-scale weather maps, seismographs, hydrographs, etc.; application of conversion factors, trig functions, graphing, isoline mapping, topographic profiling, etc.).			x									
	5	To illustrate the scientific method (e.g., hypothesis testing using the age of Hawaiian Island basalts relative to their distribution to predict direction and rate of plate motion; hypothesis testing using the temperature response of sand vs. water relative to radiation inputs to explain continentality; hypothesis testing of the temperature response of dark vs. light colored material relative to radiation inputs to account for natural selection of leaf structures present on Encelia farinosa vs. E. californica; etc.).			x									
GEOG 130	1	Students should be able to memorize, apply, and explain the rationale behind classification systems developed for recognizing, explaining, and predicting relationships, patterns, and trends in Cultural Systems (e.g., the demographic transition; classification of languages; classification of religious systems; human development index; genetic classification system of boundaries; state territorial morphology; etc.)					x							

	90		EA 2015	Spr 2016	EA 2016	Spr 2017	EA 2017	Spr 2018	EA 2018	Spr 2019	EA 2010	Spr 2020	EA 2020	Spr 2021
COOK52 #	510	Students should be able to memorize, apply, and	1 A 2013	2010	1 A 2010	2017	1 A 2017	2018	1 A 2018	2015	1 A 2015	2020	TA 2020	2021
		explain the rationale behind classification systems												
		developed for recognizing, explaining, and predicting												
		relationships, patterns, and trends within the												
		Atmospheric System (e.g., classification of atmospheric												
		laverina: classification of thermal vs. dvnamic weather												
		systems; classification of stable vs. unstable vs.												
		conditionally unstable tropospheric conditions;												
		classification of cloud types as an indicator of tropospheric												
		stability; classification of diabatic vs. adiabatic work												
		processes; classification of mesoscale vs. synoptic scale vs.												
		continental scale vs. global scale atmospheric motions;												
GEOG		classification of zonal vs. meridional Jet Stream patterns;												
140	1	etc.).						х						
		Students should be able to describe apply and												
		Students should be able to describe, apply, and												
		explain the evidence benind the foundational												
		scientific models commonly used to explain and												
		predict relationships, patterns, and trends within the												
		Atmospheric System (e.g., Synoptic scale weather maps,												
		including the analyzed version of surface isobar maps and												
		upper-level height-contour maps; Kinetic Theory including												
		the Equation of State and the Hydrostatic Equation, such as												
		applied to systems powered by differential neating;												
		mermodynamics, including the unique role of water-vapor												
		energy transformations associated with phase changes:												
		Dynamics such as applied to the general circulation of the												
		atmosphere and to meridional let Stream patterns that												
		produce zones of upper-level divergence vs. convergence:												
		Wave Cyclone Theory resulting from Jet Stream dynamics												
		and producing the traveling Cold Core Lows and associated												
		frontal dynamics so common to winter across the United												
	2	States (i.e., Midlatitude Cyclogenesis); etc.).						х						

	r –		r	Spr	1	Spr	1	Sor	1	Spr	1	Snr	1	Spr
COURSE #	SLO		FA 2015	2016	FA 2016	2017	FA 2017	2018	FA 2018	2019	FA 2019	2020	FA 2020	2021
	3	Students should be able to explain the step-by-step causes and outcomes of thermal circulation within the Atmospheric System, including across various spatial and temporal scales (<i>e.g., Sea Breezes vs.</i> <i>Monsoonal Wind Systems vs. Hadley Cells; production of</i> <i>Warm Core Lows such as stationary Desert Thermal Lows</i> <i>vs. traveling Tropical Cyclones (e.g., Hurricanes); etc.</i>).						x						
	4	Students should be able to discuss the unique characteristics and importance of water especially in the vapor phase within the Atmospheric System (<i>e.g.</i> , <i>high capacity to store heat energy per change in</i> <i>temperature; high latent heat associated with phase</i> <i>changes; radiative properties relative to infrared radiation</i> <i>and greenhouse warming; energy source behind convective</i> <i>weather systems; basic measures of humidity (e.g., specific</i> <i>humidity vs. saturation specific humidity vs. relative</i> <i>humidity); systematic distribution of the mechanisms by</i> <i>which precipitation is produced; effect on atmospheric</i> <i>instability; etc.</i>).						x						
GEOG 150	1	**CROSS-LISTED: SEE GEOL 150**												
GEOG 170	1	Students should be able to describe and explain California's location relative to the tectonic system, and thus why it's a) so seismically active and b) topographically diverse.							x					
-	2	Students should be able to describe and explain California's location relative to the general circulation of the atmosphere, summer vs. winter, and all that implies							x					

			-		-		-		-		-		-	
COURSE #	SLO		FA 2015	Spr 2016	FA 2016	Spr 2017	FA 2017	Spr 2018	FA 2018	Spr 2019	FA 2019	Spr 2020	FA 2020	Spr 2021
		Students should be able to describe the evolutionary												
		response to climatic variation within the state, in												
		association with its topography, resulting in its												
	3	spectacular diversity of ecosystems							х					
		Students should be able to describe the natural												
		distribution of water resources in the state relative to												
		human development and demographic trends, and												
		thus be able to explain the logistical, political, and												
		ecological implications that result. Likewise, the												
	4	situation for the entire arid West							х					
		Students should be able to name California's major												
		sub-regions, and describe and explain the site,												
	5	situation, and economic base of each							х					
		Students should be able to describe the unique												
		demographic diversity of California, both in terms of												
		the innovative strength it brings and challenges it												
	6	presents							х					
		Students will be able to define, analyze, and												
GEOG		synthesize geographic components within the												
172	1	designated field area	х											
		Students will be able to define analyze and												
GEOG		students will be able to define, analyze, and												
172	1	designated field area												
1/3			x											
		Students will be able to define, analyze, and												
GEOG		synthesize geographic components within the												
174	1	designated field area	x											
±, ,	-		~											
		Students will be able to define, analyze, and												
GEOG		synthesize geographic components within the												
175	1	designated field area.	x											

				Spr										
COURSE #	SLO	Students will be able to define analyze, and	FA 2015	2016	FA 2016	2017	FA 2017	2018	FA 2018	2019	FA 2019	2020	FA 2020	2021
		Students will be able to define, analyze, and												
GEOG		synthesize geographic components within the												
176	1	designated field area	х											
		Students will be able to identify, examine, and assess												
GEOG		geographic component(s) in a study of individualized												
199	1	content	х											
		A: Students will be able to define and analyze												
GEOG		geographic components of the discipline within a												
299	1	specialized topic in geography.	х											
		B: Students will be able to define, analyze, and												
		synthesize geographic components within a												
	2	specialized topic in geography.	х											